
INCLUDING PUNCTUATION, CAPITALIZATION AND NUMERAL IN AUTOMATIC
SPEECH RECOGNITION

Xudong Liang (Brandon)

UNI: xl2891

ABSTRACT

In traditional Automatic Speech Recognition (ASR) systems,
the generated transcript output is typically unsegmented text
that includes only the lower-cased plain word tokens and ex-
cludes other sentence components, such as punctuations, cap-
italized phrases and numerals, due to text normalization in
preprocessing. Although such transcripts containing word to-
kens alone can provide sufficient translation of the speech au-
dio, the other sentence components are also crucial to under-
standing the message. In this work, I propose modification in
the lexicon, acoustic model, and language model components
to a typical ASR architecture to include punctuation, capital-
ization and numeral in the predicted transcript. Specifically,
I propose two distinct ways to include punctuation and com-
pare both results to the Kaldi Ted-Lium model. Between these
two versions, I show that Version 2 yields better performance
in Word Error Rate (WER), which treats punctuations as stan-
dalone tokens. I also show that neural modeling yields lower
WER than statistical modeling. Despite the expected higher
WER compared to the baseline Ted-Lium model, the gap is
decreasing from statistical modeling to neural modeling.
Keywords: Automatic Speech Recognition, Kaldi, Punctua-
tion, Capitalization, Numeral

1. INTRODUCTION

In traditional Automatic Speech Recognition (ASR) sys-
tems, the generated transcript output typically only includes
the lower-cased plain word tokens, but not other sentence
components, such as punctuations, capitalized phrases and
numerals. These transcripts are also called unsegmented text
[1]. This is normally due to text normalization in prepro-
cessing. In this work, I focus on an end-to-end approach to
restore these lost sentence components in the ASR transcript:
punctuation, capitalization and numeral.

Punctuation refers to the marks used to separate sen-
tences and clauses, such as comma, period and semi-colon;
some punctuations not only provide intra-sentence separa-
tions, but also imply the underlying emotions, such as excla-
mation mark and question mark. Capitalization (or capital-
ized phrase) refers to the word phrases whose first letters are

Special thanks to Professor Beigi.

capitalized; this is always the case for the first word in a sen-
tence and often the case for special nouns, such as “Michael
Jackson” or “White House”. As we can see, capitalization in
ASR is thus instrumental in identifying named entities from
a speech to its transcript, since “the white house” and “the
White House” can convey drastically different meanings. Nu-
meral refers to converting the spelled-out numerical words
or phrases to the numerical quantities or discrete values they
represent in numbers, such as year and phone number (e.g.:
“eighteen twelve” to “1812”). A written numeral in a tran-
script can lead readers directly to the quantity or value of its
corresponding entity or event, as opposed to spelling out the
numbers in word, which often requires readers to translate to
the numbers internally first.

Although a transcript containing word tokens alone can
provide sufficient information of the speech audio, it would
often obstruct readers from understanding the ASR output se-
mantically and cause difficulties for downstream Natural Lan-
guage Processing (NLP) models [2]. That being said, it is
definitely better to include the three aforementioned sentence
components, since they are also crucial to understanding the
intrinsic relationships in the transcript (according to their def-
initions). Table 1 shows the difference between a traditional
ASR transcript with only lower-cased plain word tokens and a
desired ASR transcript that includes the other sentence com-
ponents. As we can see, including the punctuations, capital-
ized phrases and numerals in the desired format provides a
more natural way of reading and understanding the speech
transcript. With this motivation, this project focuses on in-
cluding punctuation, capitalization and numeral in ASR tran-
script.

For consistency, in the remainder of the paper, I refer to
the conventional ASR system that only generates lower-cased
plain word tokens as “Traditional ASR” and the updated ASR
system that includes punctuation, capitalization and numeral
as “Enhanced ASR”. I also use ARPAbet-style phonetic tran-
scription to spell out pronunciations in the paper.

2. RELATED WORKS

In [3], the author uses the phonetic characteristics of punctua-
tion marks, and properly processed lexical information for au-
tomatic generation of punctuation in speech transcripts. De-



Traditional
ASR

what happened in eighteen twelve to the white house

Desired
ASR

What happened in 1812 to the White House?

Table 1. A sample ASR transcript with lower-cased plain
word tokens only compared to its desired/actual transcript
with the other three aforementioned sentence components.

spite implementation and application difference, this work in-
spires me to identify lexicon adjustment as the foundation to
my approach in order to incorporate phonetic features to the
acoustic model and updated N-Grams to the language model.

In [4], the authors use Bidirectional Long Short-Term
Memory (Bi-LSTM) and Convolutional Neural Network
(CNN) for punctuation prediction, where CNN yields a better
precision and Bi-LSTM yields a better recall. Similarly, in
[5], the authors also use LSTM for punctuation prediction
and the authors in [2] use transformer and chunk merging
(decoding in parallel) for capitalization and punctuation re-
covering. In [6], the authors use maximum entropy models
and word part-of-speech for recovering punctuations. In
[1], the authors use a Bidirectional Recurrent Neural Net-
work (Bi-RNN) with attention mechanisms for punctuation
restoration in unsegmented text. In [7], the authors use atten-
tion and encoder-decoder-based segmentation for punctuation
insertion. Similarly, in [8], the authors treat the punctuation
prediction as monolingual translation problem (source lan-
guage being unpunctuated sentences and target language
being punctuated) using segmentation. These works inspire
me to incorporate Neural Network models to the acoustic
modeling and language modeling components of the “En-
hanced ASR” architecture for not only punctuation prediction
but also capitalization and numeral, in addition to statistical
Gaussian-Mixture Hidden Markov Model (GMM-HMM) for
acoustic modeling and N-Gram for language modeling.

Regarding neural language model, in [9], the author dis-
covers that using Transformer as language model in ASR ac-
tually yields less optimal results (reflected by WER) than the
conventional RNN language model for Ted-Lium [10] in Ta-
ble 1. The author reasons that it is most likely due to the large
parameter count of Transformer (e.g.: XLNet) compared to
the relatively small dataset. Therefore, considering the size of
my dataset (mentioned in Section 3), I decide to use RNN lan-
guage model instead of Transformer-based language model
for the “Enhanced ASR” model.

In [11], the authors propose a sequence-to-sequence
speech embedding framework that extends from word em-
bedding. This speech embedding framework is able to learn
fixed-length vector representations of audio segments. In [12]
and [13], the authors use Conditional Random Field (CRF)
[14] for punctuation prediction. Due to time constraint, I
decide not to explore or incorporate these ideas.

It is worth mentioning that most of the related literature

focuses on punctuation recovering, rather than the other two
sentence components, which is another motivation for this
project to achieve an end-to-end model for all three sentence
components instead of just punctuation.

In addition, I mimic Kaldi’s Ted-Lium recipe [15, 10] for
the implementation of my workflow.

3. DATA

For this project, I use two datasets, of which the details are
described below.

• Ted-Lium1 [10]: This dataset contains 2,351 audio
talks of TED speeches in NIST sphere format (SPH),
of which the total duration is 452 hours. The transcripts
of all talks are aligned automatically. It also provides
the dictionary with pronunciations. The sampling rate
is 16kHz and precision is 16 bit. Note that the tran-
script for this dataset does not include punctuation,
capitalization or numeral.

• National Speech Corpus (NSC)2 [16]: (Also known
as Singapore National Speech Corpus dataset) This is
a corpus of aligned spoken utterances in English, con-
sisting of 826,469 short utterances (as opposed to long
TED talks in Ted-Lium) with about 1,000 hours in total,
from 1,031 local English speakers. Most importantly,
this is the only dataset that provides punctuation, capi-
talization and numeral in the transcript.

Since Ted-Lium does not provide punctuation, capitalization
or numeral, I use it to pre-train a “Traditional ASR” model
(from Kaldi’s Ted-Lium recipe [15, 10]), which is then fine-
tuned on the NSC dataset for the “Enhanced ASR” model.
The approach and training workflow are explained in detail in
Section 4 below.

4. APPROACH & ARCHITECTURE

Since the pre-trained Ted-Lium model [10] (a “Traditional
ASR”) follows a pre-defined recipe [15], I skip its workflow
in this section. Instead, in this section I focus on the workflow
for the “Enhanced ASR”.

Figure 1 illustrates the architecture of a “Traditional
ASR” system. As we can see, it is broken down into several
components with different dependencies. The modification
for the “Enhanced ASR” takes places in the following four
bolded regions in Figure 1: Lexicon, Acoustic Model, Lan-
guage Model and Transcript (Data). For Acoustic Model
and Language Model implementation, I mainly follow the

1https://www.openslr.org/51/
2https://www.imda.gov.sg/programme-listing/digital-services-

lab/national-speech-corpus; I only use PART2 of this dataset since it is
the only portion that provides punctuations, capitalizations and numerals in
the transcript.



Fig. 1. The architecture of a traditional ASR system, where
most modifications of this project take place in Lexicon,
Acoustic Model, Language Model and Transcript.

workflow of Kaldi Ted-Lium recipe [15, 10], as explained in
Section 4.2 and 4.3 below.

4.1. Lexicon (text-to-phone mapping)

The most important component in ASR workflow is to pro-
vide an accurate lexicon dictionary for the model. A lexi-
con is essentially a dictionary mapping of each word to its
ARPAbet-transcribed pronunciation in the entire vocabulary
(e.g.: “seat”: “S IH T”). Therefore, how to accurately and
exhaustively include and distinguish pronunciations for punc-
tuation, capitalization and numeral in the lexicon is the key to
the success of the “Enhanced ASR” model.

I use the lexicon from Kaldi’s Ted-Lium recipe [15, 10],
which is all lower-cased and without punctuations and numer-
als, as the default lexicon dictionary, and apply the following
additions to it.

1. Capitalization: This is perhaps the easiest addition
since capitalization does not change the pronunciation
of the original word. For each word token from the de-
fault lexicon, I duplicate its entry along with its pronun-
ciation and capitalize the first letter (if the word starts
with a letter). For example, for the word token “hello”,
I also include a token “Hello” with the same ARPAbet
pronunciation. Thus, the capitalized words are counted
as separate word tokens from their lower-cased normal-
ized versions, but with the same pronunciations. This
roughly doubles the size of the lexicon. Note that in
this project, I discard the cases where the entire word
token is capitalized (e.g.: “APEC”), because it is highly
unlikely that NSC transcript includes such cases.

2. Punctuation: I consider two versions of including
punctuations in the lexicon:

(a) Version 1 - Attach punctuations to the pre-
ceding tokens: In common English text, a punc-
tuation is normally attached to the end of its

preceding word token (e.g.: comma, period, ex-
clamation mark, etc.) with no space in between.
This means, when considering punctuations in
the updated lexicon, each word token (including
the capitalized ones from above) has a possibility,
no matter how unlikely, to attach any punctua-
tion to its end. I append the punctuations to the
lexicon by manually creating N (N being the
number of unique punctuations) copies of all ex-
isting vocabulary (along with their pronunciation
mapping) and attaching each of all possible punc-
tuations in the end of each word token’s copy. All
these duplicates have the same pronunciations as
the original token. For example, I duplicate the
pronunciation mapping of “Hello” to “Hello,”,
“Hello!”, etc. (for all possible punctuations). Us-
ing this approach, we are essentially implying to
the acoustic model and language model of ASR
system that with the same pronunciation, there
are N possible options to consider for the same
word (i.e. beginning or middle of the sentence,
end of the sentence, before pause, etc.). The
limitation of this setup is that each word token
gets duplicated N times regardless, despite the
extremely low likelihood of having punctuations
attached for the majority of the vocabulary. This
roughly increases the lexicon size by a factor of N
times (N = 20), which drastically increases the
vocabulary dimension of the “Enhanced ASR”.

(b) Version 2 - Treat punctuations as standalone
tokens: The second version treats punctuations
as standalone word tokens with silence as their
pronunciations. This is a simple addition to the
updated lexicon by appending each unique punc-
tuation as a word token with a silence phone to
the end of the updated lexicon, which has a neg-
ligible increase to the lexicon size. I use NLTK’s
WordPunctTokenizer3 to tokenize the original
transcript in NSC dataset so that each punctuation
is also treated as a standalone token in language
modeling. A potential drawback or suspicion is
that whether the “Enhanced ASR” can accurately
distinguish true silence and punctuation tokens
when encountering the silence phones. Another
limitation is that some punctuations may have
non-silence pronunciations (a period or a dot can
be pronounced as “point” or “dot”), but these are
very rare edge cases.

Since these two versions of lexical punctuations are
mutually exclusive, I eventually create two lexicons to
compensate for each version. Note that the additions of
capitalization and numeral lexicon mapping are exactly

3https://www.nltk.org/api/nltk.tokenize.html



the same in both lexicon versions, and the only differ-
ence is how punctuation lexicons are treated. It would
certainly be interesting to compare the ASR model re-
sults of these two lexicon versions. An early guess is
that Version 2 would outperform Version 1 due to a sig-
nificantly smaller lexicon size and the fact that stan-
dalone punctuations would provide less confusion in
language modeling as opposed to Version 1.

3. Numeral: Unlike capitalization and punctuation above,
which require minimal effort in pronunciation con-
struction, numeral requires large amount of pronunci-
ation construction as a new set of lexicon mapping. I
then numeral lexicon pronunciations into the following
two categories.

(a) Normal Pronunciation using Dynamic Pro-
gramming: This type of pronunciation refers to
how we normally pronounce numbers. For ex-
ample, “11” is expressed as “eleven” (“IH L EH
V AH N”), “25” is “twenty five” (“T W EH N
T IY F AY V”), “34” is “thirty four” (“TH ER
D IY F OW R”), “73” is “seventy three” (“S EH
V AH N T IY TH R IY) and “115” is “a/one
hundred and fifteen” (“AH/W AH N HH AH N
D R AH D AH N D F IH F T IY N”). While
these pronunciations are intuitive in our mind,
it is not plain simple in transcription. However,
there exist certain patterns to follow. I first use
CMU Pronouncing Dictionary 4 to generate the
ARPAbet-transcribed pronunciations of the basic
number units (e.g.: numbers below 20, 30, 40,
the word “‘a”, ‘hundred”, “thousand”, “million”,
“and”, etc.). Then, I use these basic units to log-
ically piece together the normal pronunciations
for each number below 10,000. For numbers be-
low 100, I combine the pronunciations of their
decimal number units (20s, 30s, etc.) and those of
their last-digit number. For example, the number
23 has the pronunciation of 20 followed by that
of 3. Then for numbers below 1,000, I get the
pronunciation of the hundred-digit number and
that of the remaining two-digit number, and then
insert the pronunciations of the word “hundred”
and “and” in between. For example, the number
423 is expressed as “4 hundred and 23”. Sim-
ilar rules extend beyond 1,000 and it follows a
dynamic programming approach to treat existing
numeral pronunciations as lookup table. Table 2
shows some more examples of normal pronuncia-
tions for numerals. Note that for numbers that are
larger than 99 and that start with the digit 1, their
pronunciations can start with both “a” and “one”
(e.g.: “one hundred” and “a hundred).

4http://www.speech.cs.cmu.edu/cgi-bin/cmudict

Numeral Type/Rule ARPAbet Pronunciation
a Special Word AH

and Special Word AH N D
hundred Special Word HH AH N D R AH D
thousand Special Word TH AW Z AH N D

1 Basic Number W AH N
5 Basic Number F AY V

15 Basic Number FIH F T IY N
20 Basic Number T W EH N T IY
25 “20” + “5” T W EH N T IY F AY V
70 Basic Number S EH V AH N T IY
75 “70” + “5” S EH V AH N T IY F AY V

100
“a”/“1” +
“hundred”

AH/W AH N
HH AH N D R AH D

125
“100” +
“and” +

“25”

AH/W AH N
HH AH N D R AH D

AH N D
T W EH N T IY F AY V

175
“100” +
“and” +

“75”

AH/W AH N
HH AH N D R AH D

AH N D
S EH V AH N T IY F AY V

1,000
“a”/“1” +

“thousand” AH/W AH N TH AW Z AH N D

1,175
“1,000” +

“175”

AH/W AH N TH AW Z AH N D
AH/W AH N HH AH N D R AH D

AH N D
S EH V AH N T IY F AY V

Table 2. Some examples showing the dynamic program-
ming nature of following rules to create normal pronunciation
mappings for increasing numbers using previous numbers as
lookup table.

(b) Spelled-out (Naive) Pronunciation: This subset
of pronunciation treats each digit in a number
as an independent pronunciation unit and there-
fore transcribes any given number digit by digit.
For example, it transcribes “11” as “one one”
(“W AH N W AH N”), while the normal pro-
nunciation should be “eleven” (“IH L EH V AH
N”). Despite the naive nature of this pronun-
ciation style, it is still possible for people to
pronounce numbers this way, such as spelling out
phone numbers or a specific ID. So it is important
to also include this type of number pronuncia-
tions in our numeral lexicon. To achieve this, I
use CMU LOGIOS Lexicon Tool 5 to generate
ARPAbet-transcribed pronunciations of all pos-
sible numbers under 10,000 and append these
number-to-pronunciation mappings to the up-
dated lexicon.

5http://www.speech.cs.cmu.edu/tools/lextool.html



Here the threshold of 10,000 is a hyper-parameter,
which is subject to change, since there may be a infi-
nite amount of numbers. Note that the resulting lexicon
contains both numeral pronunciation categories, since
both are valid ways of pronouncing numbers.

In summary, I create two versions of lexicon. Both ver-
sions contain the capitalized word tokens and numerals (both
categories). Version 1 attaches punctuations to the end of each
possible word token, while Version 2 treats punctuations as
standalone word tokens. Thus, for punctuation, the two ver-
sions are mutually exclusive.

4.2. Acoustic Model (phone-based)

I follow the acoustic model in the Kaldi Ted-Lium recipe
[15, 10] to incorporate phonetic features for punctuation, cap-
italization and numeral.

1. Statistical Acoustic Model - GMM-HMM: Specif-
ically, I first compute the Mel Frequency Cepstral
Coefficients (MFCC) of the speech audios using the de-
fault 25-millisecond window length and 10-millisecond
window step. I then compute their Cepstral mean and
variance normalization (CMVN). These data are then
fed through monophone (context-independent) and
then triphone (context-dependent) training to form the
standard statistical GMM-HMM acoustic model. The
triphone training includes delta-based, delta + delta,
Linear Discriminant Analysis Maximum Likelihood
Linear Transformation (LDA-MLLT) and Speaker
Adapted Training (SAT) in order. Each monophone
and triphone training phase is immediately followed by
phoneme alignment to ensure training quality.

2. Neural Acoustic Model - TDNN: I then enhance the
GMM-HMM acoustic model through Time-Delay Neu-
ral Network (TDNN). In this process, I first compute
the i-vectors to augment the original MFCC features
into 220-dimensional input vectors, align the Feature
space Maximum Likelihood Linear Regression (FM-
LLR) lattices, build a new topology tree before passing
the 220-dimensional input vectors into TDNN. Note
that it is during this step where I input the pre-trained
Ted-Lium model [10] for fine-tuning.

4.3. Language Model (text-based)

1. Statistical Language Model - 4-Gram: Using the up-
dated lexicon mentioned above, I first train an 4-Gram
(ARPA-format) model to create a Lexicon Finite-State
Transducer (FST) and a Grammar FST to form a sta-
tistical language model. Note that the 4-Gram model
also includes uni-grams, bi-grams and tri-grams. I then
enhance it through neural language modeling.

2. Neural Language Model - RNN: As mentioned in
Section 2, the author in [9] discovers that a Transformer-
based (e.g.: XLNet) language model in ASR could
yield less optimal results (reflected by WER in Ta-
ble 1) than the conventional RNN language model for
small datasets. Because of this, I decide to use RNN
instead of Transformer as the neural language model to
enhance the statistical 4-Gram language model.

I obtain the final model using beam-search decoding and
pruned lattice-rescoring. This is the same as the Kaldi Ted-
Lium recipe [15, 10].

4.4. Transcript (data) and Fine-Tuning

I use the first dataset (Ted-Lium) in Section 3 to pre-train a
“Traditional ASR” model since Ted-Lium transcripts do not
contain punctuation, capitalization or numeral. I then use
the second dataset (NSC) in Section 3 to fine-tune this pre-
trained Ted-Lium model since NSC transcripts do provide the
three aforementioned sentence components. Specifically, I
import the pre-trained Ted-Lium model in the TDNN training
phase in acoustic modeling of the “Enhanced ASR” model to
achieve transfer learning from the “Traditional ASR” model.

Lastly, I use Kaldi’s lattice rescoring [15] to compute
Word Error Rate (WER) as the evaluation metric and Kaldi’s
Ted-Lium recipe [10] result as the baseline.

5. EXPERIMENTS AND RESULTS

I first train an “Enhanced ASR” model for each lexicon
version using statistical acoustic and language models (men-
tioned above in Section 4.2.1 and 4.3.1) only to get a pre-
liminary performance comparison between the two versions.
Note that this model checkpoint does not take in the pre-
trained Ted-Lium model [10] for fine-tuning since fine-tuning
takes place in TDNN training for neural acoustic modeling.
The middle column of Table 3 shows the WER’s of these two
model versions using statistical modeling only, where Version
2 clearly outperforms Version 1 in WER on test data (32.5%
vs 39.7%), which meets my expectation earlier. The reason
may be two-fold: 1). Version 2 has a significantly smaller
lexicon size since it appends each individual punctuation as
a unique standalone token, where Version 1 attaches each
punctuation to the end of each valid word token, thus making
it far more impractical. 2). By making each punctuation a
standalone token in Version 2, it creates a more natural lan-
guage model where attaching punctuations to the end of word
tokens in Version 1 may incur far more noise in language
modeling. This probably better distinguishes punctuations
from true silences and pauses.

Then, I choose Version 2 to continue training using neural
acoustic and language modeling to enhance its performance
(mentioned above in Section 4.2.2 and 4.3.2). Due to time



ASR Model
AM: GMM-HMM

LM: 4-Gram
+ AM: TDNN

(1 Epoch)
Ted-Lium

(Traditional ASR) 16.1% 6.7%

Version 1 -
Punct Attached

(Enhanced ASR)
39.7% -

Version 2 -
Punct Tokenized
(Enhanced ASR)

32.5% 19.9%

Table 3. Word Error Rates (WER) of statistical GMM-HMM
+ 4-Gram model and TDNN model (I only trained 1 epoch
for TDNN and did not run through RNNLM due to time con-
straint) on test data for the two versions of the “Enhanced
ASR” models presented in this paper. Note that I do not
run Version 1 “Enhanced ASR” model through neural mod-
eling (TDNN for acoustic modeling and RNN for language
modeling) because its performance is significantly worse than
Version 2 “Enhanced ASR” model for statistical modeling
(GMM-HMM for acoustic modeling and 4-Gram for lan-
guage modeling). I attach Ted-Lium results as baseline for
comparison, though the last column for Ted-Lium is actually
achieved from TDNN and RNNLM. Also note that Ted-Lium
result does not include punctuation, capitalization or numeral.

constraint, I only got it to run through TDNN training (for
1 epoch), not through RNNLM. Note that this model check-
point does take in the pre-trained Ted-Lium model [10] for
fine-tuning in TDNN training. The last column of Table 3
shows the WER of Version 2 of the “Enhanced ASR” using
TDNN as the acoustic model . By comparing the last column
to the middle column for Version 2, we can see that applying
neural modeling significantly improves the performance from
statistical modeling alone (19.9% vs 32.5%). This is expected
as neural modeling should outperform statistical modeling.

I also include the WER’s of Ted-Lium on test data [10]
as the baseline in the first row of Table 3, for both statisti-
cal (middle column) and neural modeling (last column). For
statistical modeling (middle column), we can see that even
though Version 2 outperforms Version 1, its WER still dou-
bles that of Ted-Lium. Similarly, for neural modeling (last
column), we can see that the “Enhanced ASR” (Version 2)
also has a significantly higher WER than Ted-Lium. This is
also expected, as adding the three aforementioned sentence
components definitely incurs additional noise and obstruction
to the acoustic and language model. However, the gap be-
tween Version 2 and Ted-Lium model is actually decreasing
from statistical modeling (middle column) to neural modeling
(last column), which is encouraging.

Additionally, I take the liberty to compare the actual de-
coded prediction result by the statistical and the neural mod-
els of Version 2. Table 4 shows an original transcript and the

ASR Model Prediction
Original Transcript
(Punct Tokenized) Richard Tay Tian Hoe , and Kok Heng Leun .

Version 2
GMM-HMM Richard Tay Tian Hoe and Kok Heng Lim ?

Version 2
TDNN Richard Tay Tian Hoe , and Kok Heng Lim ?

Table 4. A sample prediction by the statistical GMM-HMM
Version 2 model and the neural TDNN Version 2 model, com-
pared to the original transcript. Note that the original tran-
script is tokenized so that each punctuation is a standalone
token for Version 2 comparison.

prediction results by the statistical and the neural models of
Version 2 on the same speech file. Note that the original tran-
script is tokenized so that each punctuation is a standalone
token for Version 2 comparison. We can see that both ver-
sions are able to capture capitalization (other examples can
also show the same for numeral), on top of decoding plain
word tokens. This asserts the effectiveness of the proposed
approach in this work. For punctuation, we can see that the
prediction by the neural model is closer to the original tran-
script than that by the statistical model regarding the middle
comma, even though both predictions incorrectly predicts the
last punctuation as question mark. This shows that the neu-
ral model may be superior in punctuation prediction than the
statistical model, which is also expected. This also encour-
ages more work to see the limit on punctuation prediction by
TDNN and RNNLM.

6. REFLECTION

The main bottleneck in this work lies in lexicon construction
phase as described in Section 4.1. It is fundamentally difficult
to use a brute force approach to cover all possible variants
of punctuations, capitalizations and numerals; and it is very
much the case that I have not considered all cases in Section
4.1. For instance, I have only considered punctuations that
attach to the preceding words like comma and period or as
standalone tokens; however, some punctuations may reside
inside word tokens like dash. Additionally, some punctuation
may have pronunciations other than silence, like “&” which
should be pronounced as “and”. Also, I have only considered
capitalizing the first letter as capitalization, but sometimes the
entire word or a portion of the word may be capitalized, such
as “ARPAbet” or “US”. Moreover, there could be many dif-
ferent ways to read a number (e.g.: year, telephone number,
etc.); for example, for a four-digit number like “2589”, the
current lexicon includes its pronunciation for “two thousand
five hundred and eighty-nine”, but it is also possible to pro-
nounce it as “twenty-five hundred and eighty-nine”, albeit less
common. The edge cases above are not included in the cur-



rent lexicon setup, which may contribute to the relatively high
WER by this “Enhanced ASR” model. In essence, to tackle
these problems is equivalent to covering all variants of oral
expressions in practical scenarios, especially the edge cases,
which definitely requires more work.

7. CONCLUSION

I present an “Enhanced ASR” model that includes punctua-
tion, capitalization and numeral in ASR transcript output by
modifying the lexicon, acoustic modeling and language mod-
eling components. The key lies in the lexicon pronunciation
construction for these three sentence components in addition
to lower-cased plain word tokens. I use statistical learning and
neural network approaches in acoustic and language model-
ing as well as the NSC dataset for transfer learning (from the
model trained on Ted-Lium dataset). I compare two versions
of the “Enhanced ASR” model with one attaching punctua-
tions to the end of the preceding tokens and the other treating
punctuations as standalone tokens and show that the second
version outperforms the first version at the completion of sta-
tistical modeling stage. Furthermore, I train the second ver-
sion through neural modeling and achieve better results than
the statistical model. Even though both statistical and neu-
ral models yield less optimal performance compared to Ted-
Lium model, the gap is decreasing from statistical modeling
to neural modeling, which is encouraging. Furthermore, pre-
diction result asserts the effectiveness of the model to capture
the three aforementioned sentence components.

There are three main contributions of this work: 1. It
jointly learns and predicts all three of the sentence compo-
nents in one ASR model, rather than separately, asserted by
the evaluation metric and prediction samples. 2. It is an end-
to-end model in that it does not introduce additional ASR
components or require any middle-ware components to sepa-
rately deal with each of the three sentence components. 3. It
utilizes a transfer learning approach to impart wisdom from
SOTA ASR models for lower-cased plain word tokens to pre-
dicting both the plain word tokens and the three aforemen-
tioned sentence components.

8. FUTURE WORK

There still remains space for future work. First, I would like
to complete a longer TDNN and RNNLM training to see the
limit of neural modeling on this particular dataset and lan-
guage dictionary. Another idea is to conduct ablation stud-
ies on the individual and combinatorial impacts of each of
the three sentence components. Also, as mentioned above,
another idea is to think about efficient ways to consider all
possible word capitalizations (a portion of the word may be
capitalized rather than the first letter), potential punctuations
(a punctuation may reside inside a word token rather than in

the end, and “&” should be pronounced as “and” instead of si-
lence) and number-word combinations (such as “8th”, “1st”),
without using a fundamentally brute-force approach.

9. REFERENCES

[1] Ottokar Tilk and Tanel Alumäe, “Bidirectional recurrent
neural network with attention mechanism for punctua-
tion restoration,” in INTERSPEECH, 2016.

[2] B. Nguyen, V. H. Nguyen, Hien Nguyen, Pham Ngoc
Phuong, The-Loc Nguyen, Quoc Truong Do, and L. C.
Mai, “Fast and accurate capitalization and punctuation
for automatic speech recognition using transformer and
chunk merging,” 2019 22nd Conference of the Ori-
ental COCOSDA International Committee for the Co-
ordination and Standardisation of Speech Databases
and Assessment Techniques (O-COCOSDA), pp. 1–5,
2019.

[3] Julian Chen, “Speech recognition with automatic punc-
tuation.,” 01 1999.

[4] Piotr Zelasko, Piotr Szymanski, Jan Mizgajski, Adrian
Szymczak, Yishay Carmiel, and Najim Dehak, “Punc-
tuation prediction model for conversational speech,”
CoRR, vol. abs/1807.00543, 2018.

[5] Ottokar Tilk and Tanel Alumäe, “Lstm for punctuation
restoration in speech transcripts,” 01 2015.

[6] Fernando Batista, D. Caseiro, N. Mamede, and I. Tran-
coso, “Recovering punctuation marks for automatic
speech recognition,” in INTERSPEECH, 2007.

[7] Eunah Cho, Jan Niehues, and Alex Waibel, “Nmt-
based segmentation and punctuation insertion for real-
time spoken language translation,” 08 2017, pp. 2645–
2649.

[8] Eunah Cho, J. Niehues, and Alexander H. Waibel, “Seg-
mentation and punctuation prediction in speech lan-
guage translation using a monolingual translation sys-
tem,” in IWSLT, 2012.

[9] Kareem Nassar, “Transformer-based language mod-
eling and decoding for conversational speech recogni-
tion,” CoRR, vol. abs/2001.01140, 2020.

[10] François Hernandez, Vincent Nguyen, Sahar Ghannay,
Natalia A. Tomashenko, and Yannick Estève, “TED-
LIUM 3: twice as much data and corpus repartition
for experiments on speaker adaptation,” CoRR, vol.
abs/1805.04699, 2018.

[11] Yu-An Chung and James R. Glass, “Speech2vec: A
sequence-to-sequence framework for learning word em-
beddings from speech,” CoRR, vol. abs/1803.08976,
2018.



[12] Nicola Ueffing, M. Bisani, and Paul Vozila, “Improved
models for automatic punctuation prediction for spoken
and written text,” in INTERSPEECH, 2013.

[13] Wei Lu and Hwee Ng, “Better punctuation prediction
with dynamic conditional random fields.,” 01 2010, pp.
177–186.

[14] John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira, “Conditional random fields: Probabilistic
models for segmenting and labeling sequence data,” in
Proceedings of the Eighteenth International Conference
on Machine Learning, San Francisco, CA, USA, 2001,
ICML ’01, pp. 282–289, Morgan Kaufmann Publishers
Inc.

[15] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko Han-
nemann, Petr Motlicek, Yanmin Qian, Petr Schwarz, Jan
Silovsky, Georg Stemmer, and Karel Vesely, “The kaldi
speech recognition toolkit,” in IEEE 2011 Workshop on
Automatic Speech Recognition and Understanding. Dec.
2011, IEEE Signal Processing Society, IEEE Catalog
No.: CFP11SRW-USB.

[16] Jia Xin Koh, Aqilah Mislan, Kevin Khoo, Brian
Ang, Wilson Ang, Charmaine Ng, and Ying-Ying Tan,
“Building the Singapore English National Speech Cor-
pus,” in Proc. Interspeech 2019, 2019, pp. 321–325.


