
Parallelism Comparison - K-Means Clustering in MPI vs in Spark MLlib

Binwei Xu and Brandon Liang
{bixu,brliang}@davidson.edu

Davidson College
Davidson, NC 28035

U.S.A.

Abstract

This project focused on the fundamental properties and dif-
ferences in applications of parallelism. We applied K-Means
Unsupervised clustering algorithm to position distribution
breakdown data for NBA teams derived from play-by-play
game data from National Basketball Association (NBA) on
Apache Spark and on MPI to compare the respective run
times. The result showed that MPI ran faster with relatively
small sizes of clusters and relatively small numbers of iter-
ations while Spark provided a stable run time of execution
when the parameters become large.

1 Introduction
Machine Learning is one of the most popular big data
analytic approaches that has become a driving force in
the current technology industries. Most machine learning
algorithms iteratively learn from data to extract useful
insights, namely training process. Training on big data
usually requires abundant memory and takes enormous
amount of computation. One solution is to run machine
learning algorithms in parallel on multiple machines. The
benefit of parallelizing algorithms is to better allocate the
memory resources and thus to raise efficiency. Considering
the complexity of nowadays data structure, the volume of
data available and the increasing velocity of data produc-
tion, machine learning algorithms have to directly face the
challenge of parallelism and try to improve on the speed of
complex computations and the efficiency of inter-machine
communication.

Inspired by the research of Reyes-Ortiz et al (Reyes-Ortiz,
Oneto, and Anguita 2015) to investigate the performances
of two parallelization frameworks on two supervised learn-
ing algorithms, we decided to implement an unsupervised
learning algorithm, K-Means clustering, on the play-by-play
game data from National Basketball Association (nba 2016)
with Apache Spark MLlib (Spark 2016b) and with Open
MPI. This research aims to compare the performance of the
same algorithm on two different parallelization frameworks
in terms of run time.

The paper is organized as follows: in Section 2, we intro-
duce the data source, data processing and final data’s struc-
ture. In Section 3, we introduce the background knowledge

of K-Means clustering algorithm, Apache Spark and Open
MPI. We will also explain in detail how we implement K-
Means clustering on MPI. After we talk about the experi-
ment set-up and the method to compare the two frameworks
in Section 4, we justify the correctness of the clustering re-
sult in Section 5. Finally, in Section 6 and 7, we talk about
the research results and our conclusion.

2 Data
In this section, we introduce the subject of our problem, fol-
lowed by the source of the data and processing of the data.

Context of Problem
NBA, National Basketball Association, is the best profes-
sional basketball league around the world. Not only does it
attract millions of basketball fans around the world, more
and more masterminds are applying data analytics to the
basketball world to understand the game from another per-
spective. Common analysis involve statistical analysis, team
ranking, etc. In this project, we intended to cluster NBA
teams by their position distribution breakdown within dif-
ferent margin range. Even though our primary focus of the
project is to compare run time between MPI and Spark ap-
plications, the actual results of the clustering could still be
insightful as it can offer another way of analyzing the game
of basketball.

Raw Data and Data Processing
NBA provides a detailed play-by-play data for each
regular-season game on its official website, where each
play is a data point for that game. The data for each game
are in the form of JSON and here is a sample link(nba 2016):

http://stats.nba.com/stats/playbyplayv2?
EndPeriod=10&EndRange=55800&GameID=
0021600003&RangeType=2&Season=2015-16&
SeasonType=Regular+Season&StartPeriod=1\
&StartRange=0

Each data point has a field “Score Margin”, which is the
point differential between the home and opponent team for
each play of a game. For two consecutive plays, the field
could generate the change of score margin on this very play.

For example, if a team leads by 3 points on the previous
play and leads by 1 point on the current play, its score
margin change on the current play is then -2.

After data scraping and processing, we were able to ob-
tain the information of a single team’s score margin and
score margin change on each play for each game of a sea-
son. Combining such information, we were able to finalize
each team’s score margin and score margin change distribu-
tion breakdown for the entire season. The score margin dis-
tribution breakdown is the proportion of total plays when the
team is within a specific range of score margins. For exam-
ple, “-30 < x 6 -25” shows the percentage of plays when the
team is trailing by less than 30 points and trailing by more
than 25 points. Moreover, the score margin change distri-
bution breakdown is the proportion of total plays when the
team is within a specific range of score margins just before
the current play and changed the score margin on the current
play. For example, “-30 < x 6 -25 +” shows the percentage
of plays when the team is trailing by less than 30 points and
trailing by more than 25 points coming to this play and is
able to cut down the deficit on this play.

Final Data
The score margin distribution breakdown contains 18
ranges, from “x 6 -40”, “-40 < x 6 -35” to “35 < x 6 40” and
“x > 40”. The score margin change distribution breakdown
contains twice as many ranges, as each score margin range
has both “+” and “-” directions. We also included two more
features: proportion of total plays when the team scores and
proportion of total plays when the opponent scores. This
yields a total of 56 features for each team. Note that every
feature is a percentage, thus carrying the same weight.

Moreover, there are 30 NBA teams in each season and we
were able to scrape play-by-play data from the past 12 sea-
sons, therefore yielding 360 team-season pairs. Note that a
same team in different seasons should be treated as a differ-
ent data entity.

Therefore, in our final dataset, we had 360 team-season
pairs, each having 56 features of position breakdown. Figure
1 shows two sample data points (two teams), the Philadel-
phia 76ers and the Charlotte Bobcats in the 2004-2005 sea-
son. Throughout the entire 2004-2005 season, the Charlotte
Bobcats had 7.394% of the plays when they led by more
than 5 points and less than 10 points, 0.776% of the plays
where they managed to score when leading by more than 5
points and less than 10 points; there were 11.578% of the
plays when they managed to score and 12.398% of the plays
when they let opposing teams score.

3 Background
In this section, we introduce the background of the machine
learning algorithm we implemented as well as the parallel
systems we utilized.

K-Means Clustering
K-Means clustering is a prototype unsupervised learning
algorithm that partitions data points into k clusters in which

Team-Season Pair 4-76ers 4-Bobcats
5 <x <= 10 14.122 7.394

...
5 <x <= 10 + 1.585 0.776

...
Total + % 12.277 11.578
Total - % 12.322 12.398

Figure 1: For display reason, the two sample data point table
is transposed.

each point belongs to the cluster with the closest center. In
this case, each point and each center are a vector with 56
features that represents the position distribution breakdown
of a team in a season.

K-Means custering takes in two parameter: k, number of
clusters and I, number of iterations. The algorithm starts
with k randomly chosen points as centers for k clusters re-
spectively. In order to cluster the data points, K-Means clus-
tering calculates the Euclidean distances between each point
and each center to find the closest center and assign this
point to that center’s cluster. This process needs to cover
the entire dataset to compare all k centers in order to find
the closest in each iteration. Thus, if there are n data points,
there will be O(n ∗ k) many calculations. Since the centers
are randomly chosen, the resulted clusters are not optimized.
The algorithm calculates the mean value of each feature for
all points in their corresponding clusters and uses mean val-
ues of all features to form a new center for each cluster. After
all k centers are updated, the algorithm runs another iteration
of the clustering over the entire dataset. Therefore, theoret-
ically, after sufficient iterations, K-Means clustering is able
to partition data points into their most suitable clusters.

Apache Spark and Spark MLlib
Apache Spark is a fast and general engine for large-scale
data processing (Spark 2016a). It is an upgrade on MapRe-
duce that provides in-memory computing on clusters with
its Resilient Distributed Dataset. Spark has been imple-
mented in common programming languages such as Python,
Java and Scala, and thus provides an easier environment for
development. Moreover, Spark is fault-tolerant.

MLlib is Spark’s Machine Learning library. It provides an
API for Machine Learning algorithms in Spark, such as re-
gression, classification and clustering (Spark 2016b). In this
project, we are interested in applying K-Means clustering,
which is already implemented in Spark MLlib.

Message Passing Interface
Message passing interface(MPI) is a standardized and
flexible message-passing system developed by a group of
researchers since 1992. It provides a thin layer and thus
allows a wide variety of parallel computing programs. The
basic idea of MPI is to distribute memory resources to com-
pute in parallel on multiple machines and communicate via
collective operations. Since its nature of high performance

orientation and flexibility, MPI usually generates desirable
performances within a considerably short amount of time.
However, one of its disadvantages is also its flexibility
because, unlike Spark, researchers need to construct specific
implementations of MPI for specific projects. Furthermore,
MPI is not fault tolerant as Spark.

Collective Operation
In our implementation of K-Means clustering on MPI, the
entire data is divided based on the number of machines
where the algorithm runs on each partition of the data in par-
allel. Communication happens when the algorithm finishes
one iteration of clustering and all machines are ready to up-
date the centers. The program then finds a new center for
each cluster by calculating the mean of each features within
this cluster across all machines. The update process is car-
ried out only in root machine. Hence, all machines need to
pass in the sums of each features of points in each cluster
and the sizes of each cluster, both of which are computed
locally. In the root machine, we used gatherv to collect
the sums and sizes from all machines. Afterwards, we used
bcast to broadcast the new global centers and proceed to
next iteration of clustering using the updated centers. The
key idea here it to minimize the collective operation calls in
MPI implementation since shuffling is the most expensive
operation in MPI and any distributed computing schemes.

4 Experiments
In the experiment, we imported data as a comma-separated
values(csv) file and applied both K-Means clustering from
Spark MLlib and the algorithm constructed by our own on
MPI using Open MPI library. The following parameters are
controllable and crucial to K-Means clustering in both sys-
tems and allow us to compare the run times: number of it-
erations and number of clusters. Furthermore, MPI takes in
an additional parameter: number of machines. As a result,
these are the three parameters we vary to compare the run
times. To see how to embed parameter settings for each pro-
gram in command line, please read README.txt.

Assumption
The Spark clustering program was executed on our per-
sonal computer. That computer has a 2.6-GHz Intel Core
i5 processor and a 8-GB memory. The MPI clustering pro-
gram was executed on a school computer in the computer
lab (B110). The school computer has a 2.70-GHz Intel(R)
Core(TM) i5 processor and a 16-GB memory. Due to the na-
ture of concurrent and parallel programming, hardware set-
ting may play a big role in resulting performance. Thus, for
this project, we assumed that the computation power is con-
sistent and equivalent between our personal computer and
the school computer.

5 Correctness
Although our primary focus is the performance of run time,
the correctness of the algorithm cannot be ignored. How-
ever, it is hard to evaluate the correctness of both programs

due to the nature of unsupervised learning. Nevertheless,
since K-Means clustering algorithm is already implemented
in Spark MLlib, we only needed to worry about our own
implementation of K-Means clustering in MPI. Moreover,
given the subject matter in this case, we could subjectively
check the correctness of our algorithm in MPI by comparing
its clustering results to that of Spark. The following shows
a cluster of teams from the results of both the MPI program
(with 10 threads, 30 clusters and 100 iterations) and the
Spark program (with 30 clusters and 100 iterations).

MPI: [13-Suns, 13-Trailblazers, 11-Lakers, 11-Rockets,
11-Thunder, 12-Heat, 9-Cavaliers, 9-Celtics, 9-Spurs,
9-Thunder, 6-Nuggets, 4-Grizzlies, 4-Heat, 10-Bulls,
10-Celtics, 10-Thunder, 13-Mavericks, 8-Rockets]

Spark: [4-Grizzlies, 6-Nuggets, 7-Hornets, 8-Spurs, 9-
Celtics, 9-Lakers, 9-Trail Blazers, 10-Bulls, 11-Hawks, 11-
Lakers, 11-Rockets, 12-Pacers, 13-Suns, 13-Trailblazers])

There are 8 overlaps between these two clusters resulted
from MPI and Spark, which means that both MPI and Spark
recommend that these 8 teams should belong to the same
group of team due to their similarities in features. In an
expected cluster length of 12 teams per cluster (360 team-
season pairs into 30 clusters), having 8 teams for one cluster
agreed by both MPI and Spark shows that the K-Means clus-
tering algorithm worked quite well in MPI.

6 Results
After checking correctness, we now turn to our main focus.
We tested K-Means clustering on Spark and on MPI with
various parameters for run times and compared the results.

MPI with Different Numbers of Machines
Since MPI runs on multi-machine processes, it has one more
parameter than the Spark program: number of machines. In
order to show the relationship between total execution time
and number of machines, we first set the number of clusters
to be 30 and number of iterations to be 100 for the MPI
clustering program and tested it with different numbers of
machines. The following table shows the resulting execution
time for each number of machines given.

MPI: with 30 Clusters in 100 Iterations
2 0.128
3 0.141
4 0.172
5 0.243
6 0.292
7 0.327
8 0.365
9 0.475
10 0.504

Figure 2: Total Execution Time (s) of the MPI program with
30 Clusters in 100 Iterations with Different Number of Ma-
chines.

Figure 3: Execution Time of MPI Program with 30 Clusters
in 100 Iterations with Different Number of Machines.

As we can see from the table 2 and figure 3, The total
execution time of the MPI program with the same settings
increased as the number of machines increased; moreover,
it also indicates a roughly linear growth rate of total execu-
tion time on number of machines. This means that as the
program got more machines to distribute the work to, the
more time it took the program to finish the job. This result
was opposite to what we expected, as we expected the pro-
gram to run faster with more machines. Nonetheless, this
doesn’t mean that all MPI programs take longer to run with
more machines. What it implies is that while more machines
partition data into a rising number of decreasing-sized local
blocks, they also raises the cost for collective operations to
communicate between machines, as such operations are the
most expensive ones. Keep in mind that MPI’s thin layer
provides large flexibility for implementations and various
implementations may vary in how they invoke collective op-
erations. For this project, our implementation of K-Means
clustering appeared to be a very expensive one in terms of
collective operations, in that more machines cost more time.
This could be one thing to improve as a future work.

Moreover, on the other hand, this result may have also
caused by the relatively small ratio of data size and feature
size (360 / 56). In other words, the data may not have been
massive enough for the advantage of MPI’s distribution to
stand out.

Number of Clusters and Iterations - MPI vs Spark

After examining the effect of machines, we then fixed the
number of machines to be 10 for the MPI program and ran
both the MPI and the Spark clustering programs with num-
bers of clusters varying from 15, 30, 60, 120 and numbers
of iterations varying from 100, 500, 1000, 2000. That yields
a total of 16 sets of parameter combination (# of Clusters,
of Iterations) for each program. For each combination of
parameters, the code returned a total execution time in sec-
onds and we did 5 trials runs for each to get an average run
time. Then, we were able to compare the performances be-
tween MPI and Spark with the same control variables and
also compare how each program’s performance differs with
different sets of parameters.

MPI
Table 4 shows the total execution times for the MPI program
in 16 different parameter settings.

MPI: Total Execution Time (Seconds)
#Clusters / #Iterations 100 500 1000 2000

15 0.34 0.659 0.915 1.42
30 0.457 0.763 1.13 1.83
60 0.429 0.858 1.37 2.4

120 0.497 1.19 2.04 3.72

Figure 4: Total Execution Time (s) of the MPI program with
different combinations of Number of Clusters and Number
of Iterations.

Figure 5: Execution Time of MPI Program vs Number of
Iterations with Different Numbers of Clusters.

From table 4, figure 5 compares total execution time ver-
sus number of iterations for different numbers of clusters
and figure 6 compares total execution time versus number of
clusters for different numbers of iterations. We can see that,
with the same number of clusters given, total execution time
increased with more iterations; with the same number of iter-
ations given, total execution time increased with more clus-
ters. Moreover, the time complexity for the MPI program is
linear over number of iterations and over number of clusters.
It is expected that the program is O(#Iterations) since the
iterative process in MPI could only be carried out sequen-
tially; however, the fact that the program is also O(#Clusters)
implies more. It doesn’t automatically degrade the perfor-
mance of MPI but instead shows how flexible MPI is. The
reason that our MPI program is O(#Clusters) is at the step
of updating centers after each iteration. As mentioned ear-
lier, the algorithm requires all machines to pass in the sums
of each feature in each cluster; each passage of information
here is carried out by MPI’s collective operation gatherv. Al-
though one gatherv call can allow gathering from all ma-
chines to the root machine, the program still needed to call it
#Cluster times for all required clusters. Additionally, since
time complexity for the MPI program is both O(#Iterations)

Figure 6: Execution Time of MPI Program vs Number of
Clusters in Different Numbers of Iterations.

and O(#Clusters), it’s fair to argue that the MPI program
has an overall time complexity of O(#Iterations ∗ #Cluster)
given a fixed number of machines. In other words, the MPI
clustering program works extremely well in terms of time
for relatively small numbers of clusters in relatively small
numbers of iterations; its performance in time degrades pro-
portionally as the number of clusters and the number of iter-
ations increase.

Spark
Table 7 shows the total execution times for the Spark pro-
gram in 16 different parameter settings.

Spark: Total Execution Time (Seconds)
#Clusters / #Iterations 100 500 1000 2000

15 3.495 3.846 3.426 3.484
30 3.383 3.105 3.408 3.338
60 2.667 2.758 2.781 2.675
120 2.92 2.817 2.818 2.804

Figure 7: Total Execution Time (s) of the Spark program
with different combinations of Number of Clusters and
Number of Iterations.

From the table 7, figure 8 compares total execution
time versus number of iterations for different numbers of
clusters. Figure 9 compares total execution time versus
number of clusters for different numbers of iterations. We
can see that, with the same number of clusters, the run times
were quite stable, independent from number of iterations;
this means that the K-Means clustering implementation in
Spark MLlib probably has its own optimization setting to
parallelize the iterative computations.

On the other hand, with the same number of iterations,
the run times decreased as the number of clusters increased
from 15 to 30 and from 30 to 60, reached minimums when
the program was given 60 as the number of cluster and then

Figure 8: Execution Time of Spark Program vs Number of
Iterations with Different Numbers of Clusters.

Figure 9: Execution Time of Spark Program vs Number of
Clusters in Different Numbers of Iterations.

increased as the number of clusters went up to 120. This
means that for this set of data, the Spark clustering program
probably reaches an optimal performance when the number
of cluster is between 30 and 90, preferably close to 60.

Also note that while the MPI program generally ran faster
than the Spark program most of the time according to our
data, that doesn’t tell the big picture. Refer to the bottom-
right corner of table 4 and table 7. It took the MPI program
2.4 seconds for 60 clusters in 2000 iterations and 2.04 sec-
onds for 120 clusters in 1000 iterations; however, the time
suddenly jumped to 3.72 for 120 clusters in 2000 iterations.
On the other hand, the run time is stable for the Spark pro-
gram in these 3 settings, at about 2.6 to 2.8 seconds. Thus,
there must exist a threshold of settings (number of clusters,
number of iterations) where the performances of the MPI
program and the Spark program intersect. From the existing
experiment data, it seems that with relatively small param-
eter values, MPI is faster; with relatively large parameter
values, Spark stays stable and thus outperforms MPI.

(Clusters, Iterations) MPI Spark
(60,2000) 2.4 2.675

(120,1000) 2.04 2.818
(120,2000) 3.72 2.804

Figure 10: Crossing points of MPI and Spark programs run
time

7 Conclusions
In conclusion, for K-Means clustering, the MPI program
runs slower with more machines because it requires more
collective operation calls per computation and thus slow
down the execution. In addition, MPI works better with
small number of clusters and small number of iterations as
parameters. Spark run time is stable regardless of the num-
ber of iteration and Spark outperforms MPI with large num-
ber of clusters. Thus, MPI is great for relatively small cluster
size or small number of iterations while Spark is suitable for
computation-heavy parameter settings.

As mentioned earlier, one idea for further work is to find
out an algorithm to update sums of features for each cluster
after each iteration with a better time complexity than that of
our current implementation, which is O(#Clusters). Another
idea is to explore the implementation of K-Means cluster-
ing in Spark MLlib to find out why its performance can be
independent from number of iterations.

8 Acknowledgements
We would like to thank Dr. Hammurabi Mendes for his
great support and guidance during the process of preparing
data and developing algorithm on MPI, as well as his sample
codes from class. We would also like to thank Reyes-Ortiz
et al (Reyes-Ortiz, Oneto, and Anguita 2015) for the inspi-
ration of this project idea.

References
2016. Nba stats. http://stats.nba.com. Retrieved on
Nov. 5, 2016.
Reyes-Ortiz, J. L.; Oneto, L.; and Anguita, D. 2015.
Big Data Analytics in the Cloud: Spark on Hadoop vs
MPI/OpenMP on Beowulf. Elsevier B.V.
Spark. 2016a. Apache spark. http://spark.apache.
org. Retrieved on Dec. 8, 2016.
Spark. 2016b. Spark mllib clustering. http:
//spark.apache.org/docs/latest/ml-clustering.
html#example. Retrieved on Nov. 20, 2016.

